9 research outputs found

    Performance evaluation of commercial short-oligonucleotide microarrays and the impact of noise in making cross-platform correlations

    Get PDF
    BACKGROUND: Despite the widespread use of microarrays, much ambiguity regarding data analysis, interpretation and correlation of the different technologies exists. There is a considerable amount of interest in correlating results obtained between different microarray platforms. To date, only a few cross-platform evaluations have been published and unfortunately, no guidelines have been established on the best methods of making such correlations. To address this issue we conducted a thorough evaluation of two commercial microarray platforms to determine an appropriate methodology for making cross-platform correlations. RESULTS: In this study, expression measurements for 10,763 genes uniquely represented on Affymetrix U133A/B GeneChips(Ā® )and Amersham CodeLinkā„¢ UniSet Human 20 K microarrays were compared. For each microarray platform, five technical replicates, derived from the same total RNA samples, were labeled, hybridized, and quantified according to each manufacturers' standard protocols. The correlation coefficient (r) of differential expression ratios for the entire set of 10,763 overlapping genes was 0.62 between platforms. However, the correlation improved significantly (r = 0.79) when genes within noise were excluded. In addition to levels of inter-platform correlation, we evaluated precision, statistical-significance profiles, power, and noise levels for each microarray platform. Accuracy of differential expression was measured against real-time PCR for 25 genes and both platforms correlated well with r values of 0.92 and 0.79 for CodeLink and GeneChip, respectively. CONCLUSIONS: As a result of this study, we recommend using only genes called 'present' in cross-platform correlations. However, as in this study, a large number of genes may be lost from the correlation due to differing levels of noise between platforms. This is an important consideration given the apparent difference in sensitivity of the two platforms. Data from microarray analysis need to be interpreted cautiously and therefore, we provide guidelines for making cross-platform correlations. In all, this study represents the most comprehensive and specifically designed comparison of short-oligonucleotide microarray platforms to date using the largest set of overlapping genes

    Combined histomorphometric and gene-expression profiling applied to toxicology

    Get PDF
    We have developed a unique methodology for the combined analysis of histomorphometric and gene-expression profiles amenable to intensive data mining and multisample comparison for a comprehensive approach to toxicology. This hybrid technology, termed extensible morphometric relational gene-expression analysis (EMeRGE), is applied in a toxicological study of time-varied vehicle- and carbon-tetrachloride (CCl(4))-treated rats, and demonstrates correlations between specific genes and tissue structures that can augment interpretation of biological observations and diagnosis

    Oligodeoxyribonucleotide probe accessibility on a three-dimensional DNA microarray surface and the effect of hybridization time on the accuracy of expression ratios

    Get PDF
    BACKGROUND: DNA microarrays are now routinely used to monitor the transcript levels of thousands of genes simultaneously. However, the array fabrication method, hybridization conditions, and oligodeoxyribonucleotide probe length can impact the performance of a DNA microarray platform. RESULTS: We demonstrate solution-phase hybridization behavior of probe:target interactions by showing a strong correlation between the effect of mismatches in probes attached to a three dimensional matrix of a microarray and solution-based, thermodynamic duplex melting studies. The effects of mismatches in the probes attached to the microarray also demonstrate that most, if not all, of the oligodeoxyribonucleotide is available for hybridization. Kinetic parameters were also investigated. As anticipated, hybridization signals increased in a transcript concentration-dependent manner, and mismatch specificity increased with hybridization time. Unexpectedly, hybridization time increased the accuracy of fold changes by relieving the compression observed in expression ratios, and this effect may be more dramatic for larger fold changes. CONCLUSIONS: Taken together, these studies demonstrate that a three-dimensional surface may enable use of shorter oligodeoxyribonucleotide probes and that hybridization time may be critical in improving the accuracy of microarray data

    Selection of hyperfunctional siRNAs with improved potency and specificity

    Get PDF
    One critical step in RNA interference (RNAi) experiments is to design small interfering RNAs (siRNAs) that can greatly reduce the expression of the target transcripts, but not of other unintended targets. Although various statistical and computational approaches have been attempted, this remains a challenge facing RNAi researchers. Here, we present a new experimentally validated method for siRNA design. By analyzing public siRNA data and focusing on hyperfunctional siRNAs, we identified a set of sequence features as potency selection criteria to build an siRNA design algorithm with support vector machines. Additional bioinformatics filters were also included in the algorithm to increase RNAi specificity by reducing potential sequence cross-hybridization or microRNA-like effects. Independent validation experiments were performed, which indicated that the newly designed siRNAs have significantly improved performance, and worked effectively even at low concentrations. Furthermore, our cell-based studies demonstrated that the siRNA off-target effects were significantly reduced when the siRNAs were delivered into cells at the 3 nM concentration compared to 30 nM. Thus, the capability of our new design program to select highly potent siRNAs also renders increased RNAi specificity because these siRNAs can be used at a much lower concentration. The siRNA design web server is available at http://www5.appliedbiosystems.com/tools/siDesign/

    Distribution and retrograde transport of trophic factors in the central nervous system: Functional implications for the treatment of neurodegenerative diseases

    No full text
    Neurotrophins play a crucial role in the maintenance, survival and selective vulnerability of various neuronal populations within the normal and diseased brain. Several families of growth promoting substances have been identified within the central nervous system (CNS) including the superfamily of nerve growth factor related neurotrophin factors, glial derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF). In addition, other non-neuronal growth factors such as fibroblast growth factor (FGF) have also been identified. This article reviews the trophic anatomy of these factors within the CNS. Intraventricular and intraparenchymal injections of exogenous nerve growth factor result in retrograde labeling mainly within the cholinergic basal forebrain. Distribution of brain derived neurotrophic factor (BDNF) following intraventricular injection is minimal due to the binding to the trkB receptor along the ventricular wall. In contrast, intraparenchymal injections of BDNF results in widespread retrograde transport throughout the CNS. BDNF has also been shown to be transported anterogradely within the CNS. Infusion of GDNF into the CNS results in retrograde transport limited to the nigrostriatal pathway. Hippocampal injections of NT-3 retrogradely label mainly basal forebrain neurons. Retrograde transport of radiolabeled CNTF has only been observed in sensory neurons of the sciatic nerve. Following intraventricular and intraparenchymal infusion of radiolabeled bFGF, retrograde neuronal labeling was found in the telecephalon, diencephalon, mesencephalon and pons. In contrast retrograde labeling for aFGF was found only in the hypothalamus and midbrain. Since select neurotrophins traffic anterogradely and retrogradely within the nervous system, these proteins could be used to treat neurological diseases such as Alzheimer\u27s disease, Parkinson\u27s disease and amyotrophic lateral sclerosis

    Estrogen receptor immunoreactivity within subregions of the rat forebrain: Neuronal distribution and association with perikarya containing choline acetyltransferase

    No full text
    Administration of the neuroactive steroid hormone estrogen has been shown to effect cholinergic basal forebrain neuronal function. Antibodies directed against the estrogen receptor alpha (ERĪ±) revealed dark (type 1) and light (type 2) nuclear positive neurons within the islands of Calleja, endopiriform nucleus, lateral septum, subfields of the cholinergic basal forebrain, bed nucleus of the stria terminalis, striohypothalamic region, medial preoptic region, periventricular, ventromedial, arcuate and tuberal mammillary nuclei of the hypothalamus, reuniens and anterior medial thalamic nuclei, amygdaloid complex, piriform cortex and subfornical organ. In contrast, only a few scattered ERĪ± labeled neurons were found in cortex and hippocampus. ERĪ± stained cell bodies were not seen in the striatum. Counts of ERĪ± labeled neurons in intact female rats revealed significantly more type 2 neurons within the basal forebrain subfields. Quantitation of ERĪ± immunoreactive neurons revealed a significant decrease in the relative number of type 1 neurons within the medial septum (MS), horizontal limb of the diagonal band (HDB) and substantia innominata/nucleus basalis (SI/NB) following ovariectomy. Quantitation following choline acetyltransferease (ChAT) immunohistochemistry revealed a significant decrease in the number of ChAT positive neurons within the MS, HDB and SI/NB, but not VDB following ovariectomy. Following ovx, the percentage of double labeled cholinergic basal forebrain neurons also declined significantly within the MS, VDB, HDB and SI/NB. These observations suggest that estrogen effects a subpopulation of cholinergic basal forebrain neurons and may provide insight into the biologic actions of this steroid in Alzheimer\u27s disease. Copyright (C) 1999 Elsevier Science B.V

    Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson\u27s disease

    No full text
    As part of a safety and tolerability study, a 65-year-old man with Parkinson\u27s disease (PD) received monthly intracerebroventricular injections of glial-derived neurotrophic factor (GDNF). His parkinsonism continued to worsen following intracerebroventricular GDNF treatment. Side effects included nausea, loss of appetite, tingling, L\u27hermitte\u27s sign, intermittent hallucinations, depression, and inappropriate sexual conduct. There was no evidence of significant regeneration of nigrostriatal neurons or intraparenchymal diffusion of the intracerebroventricular GDNF to relevant brain regions. Alternative GDNF delivery systems should be explored
    corecore